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Turing Degrees

Definition

I For A and B contained in N, A is Turing reducible to B
(B ≥T A) iff membership in A is computable when given
membership information about B as data.

I A and B are Turing equivalent iff A ≥T B and B ≥T A.

I The Turing degrees are the ≡T -equivalence classes. D
denotes their partial ordering under ≥T .
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Two Lines of Study

Global: Properties of D
I Elementary theory, definable relations,

substructures, automorphisms.

Local: Properties of the Turing degrees of classes definable
sets

I Recursively enumerable, recursively
approximable, arithmetic, hyper-arithmetic.
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Global Structure of the Turing Degrees
Existential Theory

Technical Fact

I A family of mutually Cohen generic subsets of N yield an
independent collection of Turing degrees.

I Further, genericity over the elements of a set S yield a
collection of Turing degrees independent over the degrees in
that set.

Theorem (Kleene and Post, 1954)

Every countable partial order can be embedded as a sub-ordering
of D.

It follows that the ∃-theory of D is decidable.
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Global Structure of the Turing Degrees
Existential-Universal Theory

Technical Fact (Spector, 1956)

Forcing with recursive perfect closed sets yields a set M of minimal
Turing degree:

(∀X )[M ≥T X ⇒ (∅ ≥T X or X ≥T M)].

Theorem (Lerman, 1971)

Every finite lattice can be embedded into D as initial segment.

It follows that the ∃∀-theory of D is decidable.
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Global Structure of the Turing Degrees
Elementary Theory

Theorem (Slaman and Woodin, 1986)

Every countable relation is definable from parameters in D,
uniformly in the number of arguments of the relation.

Theorem (Simpson, 1977)

The first order theory of D is recursively isomorphic to the second
order theory of arithmetic.

Technical Fact

For A any countable antichain in D with upper bound b there are
c1 and c2 such that A is the set of x which are minimal with
respect to the following conditions.

I b ≥T x

I (∃g)
[
c1 ⊕ x ≥T g & c2 ⊕ x ≥T g & x 6≥T g

]
.
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Global Structure of the Turing Degrees
Bi-interpretability

Conjecture (Slaman and Woodin, 1990)

D is bi-interpretable with Second Order Arithmetic. That is, the
relation “−→p codes X ⊆ N and x is the Turing degree of X” is
definable in D.

Theorem (Slaman and Woodin, 1990)

I Bi-interpretability relative to parameters.

I Countable automorphism group for D.

I Bi-interpretability if and only if D is rigid.
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Local Structure of the Turing Degrees

Gödel’s Theorem tells us that axiomatic theories, despite
modelling limited data generating environments, are not
powerful enough to fully reflect the way in which
knowledge is accumulated in real life. . . . Any attempt
to transcend these limitations inevitably leads to a
process of effective approximation, and the approximating
complete theory is of ∆0

2 degree. —SBC

S. Barry Cooper. Local degree theory. In, Handbook of
computability theory. Volume 140, in Stud. Logic Found.
Math. Pages 121–153. North-Holland, Amsterdam, 1999.
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Local Structure of the Turing Degrees
The Turing degrees of the ∆0

2 Sets: D(≤T 0′)

Remark

I 0′ is the Turing degree of the canonical example of a
recursively enumerable, and thereby ∆0

2, set which is not
recursive.

I For A ⊆ N the following are equivalent.

– A is recursively approximated.
– A is ∆0

2

– A is recursive in 0′.
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Local Structure of the Turing Degrees
Existential Theory

Theorem (Kleene and Post, 1954)

Every countable partial order can be embedded as a sub-ordering
of D(≤T 0′).

It follows that the ∃-theory of D(≤T 0′) is decidable.
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Local Structure of the Turing Degrees
Existential-Universal Theory

There are similarities between D and D(≤T 0′).

Technical Facts

I (Sacks, 1961) There is a ∆0
2-set of minimal Turing degree.

I (Lerman, 1983) Every finite lattice can be embedded into
D(≤T 0′) as an initial segment.

However, there is an obvious difference.

Technical Facts

I 0′ is the greatest element of D(≤T 0′).

I (Cooper, 1978) There are two minimal degrees m1 and m2

such that m1 ⊕m2 ≡T 0′.
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Local Structure of the Turing Degrees
Existential-Universal Theory

Theorem (Lerman and Shore, 1988)

The ∃∀-theory of D(≤T 0′) is decidable.

I Combine Lerman’s embedding of finite lattices with Cooper’s
join theorem: Every finite lattice can be embedded into
D(≤T 0′) as L with top element 0′ so that L \ {0′} is an
initial segment of D(≤T 0′).

I Modify the decision procedure for D to account for the
greatest element of D and its join reducibility to pairs of
maximal elements of an embedded lattice.
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Local Structure of the Turing Degrees
Elementary Theory

Theorem (Shore, 1981)

The first order theory of D(≤T 0′) is recursively isomorphic to the
first order theory of arithmetic.

Not the original proof

I The Slaman-Woodin coding of countable relations by
parameters applies in D(≤T 0′) to uniformly low antichains,
and this allows for the representation of countable models of
P− + IΣ1.

I Shore’s technique to recognize the codings of the standard
models.
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Local Structure of the Turing Degrees
Cooper’s Problem

There are two sorts of results:

I Structural characterizations in terms that are native to partial
orderings.

I Logical characterizations in terms that correlate degree
structures with models of arithmetic.

Of which sort is the following?

Problem (Cooper, 1999, Question 4.4)

Characterize the x-independent theory of ([x , x ′],≤T ).

14/21



Local Structure of the Turing Degrees
Cooper’s Problem

Theorem

The set {
ϕ : (∀x)

[
([x , x ′],≤T ) |= ϕ

]}
is Π1

1-complete.
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Local Structure of the Turing Degrees
Cooper’s Problem

We show there is a recursive function which maps Σ1
1 sentences

θ = (∃W )(∀n)ϕ(n,W � n) to a first order sentences θ∗ so that

θ ⇔ (∃x)
[

([x , x ′],≤T ) |= θ∗
]
.

I θ∗ asserts “There are parameters −→p which code a model
(M,W ) with (M,W ) |= P− + IΣ1 + (∀n)ϕ(n,W � n).”

I Verify:

– θ∗ is a first order sentence.
– If (∃x)

[
([x , x ′],≤T ) |= θ∗

]
then the standard part of the

coded model exhibits a witness to (∃W )(∀n)ϕ(n,W � n).
– If (∃W )(∀n)ϕ(n,W � n), then any x which computes such a

W will code of (N,W ) and so verify (∃x)
[

([x , x ′],≤T ) |= θ∗
]
.
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Local Structure of the Turing Degrees
Cooper’s Problem

Problem

Characterize the theory of ([x , x ′],≤T ) on a cone.
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Local Structure of the Turing Degrees
Bi-interpretability

Conjecture (Slaman and Woodin, 1990)

D(≤T 0′) is bi-interpretable with First Order Arithmetic. That is,
the relation “−→p codes N with element e and x is the Turing degree
of the eth ∆0

2 set” is definable in D(≤T 0′).

Theorem (Slaman and Soskova, 2015)

I D(≤T 0′) has a finite automorphism base, and hence a
countable automorphism group.

– In fact, every automorphism of D(≤T 0′) is arithmetically
definable.

I D(≤T 0′) is rigid iff bi-interpretable with First Order
Arithmetic.

I D(≤T 0′) is an atomic structure.

18/21



Local Structure of the Turing Degrees
Bi-interpretability

Preliminary ingredients:

I Define an indexing of a set Z ⊆ D(≤T 0′) to be a function f
from a copy of N onto Z such that f and the copy of N are
both definable from parameters in D(≤T 0′).

– Note, if there is an indexing of Z then every arithmetically
definable subset of Z is definable from parameters in
D(≤T 0′).

I (Slaman and Woodin, 1986) As previously mentioned, any
uniformly low Z has an indexing; the recursively enumerable
degrees have an indexing.

I (Following Jockusch and Posner, 1981) Every element of
D(≤T 0′) can be written as the meet of joins of low degrees.
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Local Structure of the Turing Degrees
Bi-interpretability

Technical Fact

There is a uniformly low set of Turing degrees Z, bounded by a
low degree z , such that if x , y <T 0′, x ′ = 0′ and y 6≤T x then for
i ∈ {1, 2} there are recursively enumerable ai and ci , bi , gi <T 0′

as follows.

I bi and ci are elements of Z.

I gi is the least element below ai which joins bi above ci .

I x ≤T g1 ⊕ g2.

I y 6≤T g1 ⊕ g2.

Every low degree x is uniquely determined by its interactions with
the elements of Z and the recursively enumerable degrees. This
gives an indexing of the set of x so determined, and hence an
indexing of D(≤T 0′).
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Bi-interpretability and Automorphisms

Remaining Challenges

I Is D rigid?

I Is D(≤T 0′) rigid?
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